Extending Systematic Local Search for Job Shop Scheduling Problems
نویسندگان
چکیده
Hybrid search methods synthesize desirable aspects of both constructive and local search methods. Constructive methods are systematic and complete, but exhibit poor performance on large problems because bad decisions made early in the search persist for exponentially long times. In contrast, stochastic local search methods are immune to the tyranny of early mistakes. Local search methods replace systematicity with stochastic techniques for diversifying the search. However, the lack of systematicity makes remembering the history of past states problematic. Typically, hybrid methods introduce a stochastic element into a basically constructive search framework. Lynce [6] uses randomized backtracking in a complete boolean satisfiability solver which incorporates clause (nogood) learning to ensure completeness. Jussein & Lhomme [4] perform a constructive search while keeping conflict sets (nogoods) in a Tabu list and backtrack via a stochastic local search in the space of conflict sets. Our method, called Systematic Local Search (SysLS) [3], follows the opposite approach. We incorporate systematicity within an inherently stochastic search method (like [2]). SysLS searches through a space of complete variable assignments and relaxes the requirement for maintaining feasibility. It preserves full freedom to move heuristically in the search space with maximum heuristic information available. While many local search methods easily get trapped in local optima, SysLS records local optima as nogoods in a search memory. Nogoods force the search away from these maximally consistent but unacceptable solutions. Our method is analogous to other diversification mechanisms in local search (egTabu search) but is systematic and inherits the sound resolution rule for nogood learning. In this paper, we extend SysLS for optimization and, in particular, for job shop scheduling problems.
منابع مشابه
Optimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملA New model for integrated lot sizing and scheduling in flexible job shop problem
In this paper an integrated lot-sizing and scheduling problem in a flexible job shop environment with machine-capacity-constraint is studied. The main objective is to minimize the total cost which includes the inventory costs, production costs and the costs of machine’s idle times. First, a new mixed integer programming model,with small bucket time approach,based onProportional Lot sizing and S...
متن کاملA multi Agent System Based on Modified Shifting Bottleneck and Search Techniques for Job Shop Scheduling Problems
This paper presents a multi agent system for the job shop scheduling problems. The proposed system consists of initial scheduling agent, search agents, and schedule management agent. In initial scheduling agent, a modified Shifting Bottleneck is proposed. That is, an effective heuristic approach and can generate a good solution in a low computational effort. In search agents, a hybrid search ap...
متن کاملSolving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کامل